Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212822

RESUMO

Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.


Assuntos
Lipoxinas , Neuroglia , Doenças Neuroinflamatórias , Receptores CXCR3 , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Neuroglia/metabolismo , Animais
3.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293224

RESUMO

Glaucoma is a common neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the retinal nerve fiber layer (RNFL), resulting in a gradual decline of vision. A recent study by our groups indicated that the levels of lipoxins A4 (LXA4) and B4 (LXB4) in the retina and optic nerve decrease following acute injury, and that restoring their function is neuroprotective. Lipoxins are members of the specialized pro-resolving mediator (SPM) family and play key roles to mitigate and resolve chronic inflammation and tissue damage. Yet, knowledge about lipoxin neuroprotective activity remains limited. Here we investigate the in vivo efficacy of exogenous LXA4 and LXB4 administration on the inner retina in a mouse model of chronic experimental glaucoma. To investigate the contribution of LXA4 signaling we used transgenic knockout (KO) mice lacking the two mouse LXA4 receptors (Fpr2/Fpr3-/-). Functional and structural changes of inner retinal neurons were assessed longitudinally using electroretinogram (ERG) and optical coherence tomography (OCT). At the end of the experiment, retinal samples were harvested for immunohistological assessment. While both lipoxins generated protective trends, only LXB4 treatment was significant, and consistently more efficacious than LXA4 in all endpoints. Both lipoxins also appeared to dramatically reduce Müller glial reactivity following injury. In comparison, Fpr2/Fpr3 deletion significantly worsened inner retinal injury and function, consistent with an essential protective role for endogenous LXA4. Together, these results support further exploration of lipoxin signaling as a treatment for glaucomatous neurodegeneration.

4.
Cell Rep ; 42(8): 112925, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552601

RESUMO

The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.


Assuntos
Topotecan , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Proteínas Ribossômicas , Apoptose , Proteína NEDD8
5.
J Cell Physiol ; 237(9): 3687-3702, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862065

RESUMO

Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.


Assuntos
Anexina A4 , Glaucoma , Anexina A4/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Glaucoma/metabolismo , Humanos , Proteômica
6.
Chemistry ; 28(35): e202200360, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35491534

RESUMO

Two stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB4 ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade. The other approach installed the diol through an asymmetric dihydroxylation reaction followed by a Horner-Wadsworth-Emmons olefination to afford the common dienyne intermediate. Finally, a Sonogashira coupling and an alkyne hydrosilylation/proto-desilylation protocol furnished LXB4 in 25 % overall yield in just 10 steps. For the first time, LXB4 has been fully characterized spectroscopically with its structure confirmed as previously reported. We have demonstrated that the synthesized LXB4 showed similar biological activity to commercial sources in a cellular neuroprotection model. This synthetic route can be employed to synthesize large quantities of LXB4 , enable synthesis of new analogs, and chemical probes for receptor and pathway characterization.


Assuntos
Lipoxinas , Doenças Neuroinflamatórias , Eicosanoides , Humanos , Lipoxinas/metabolismo
7.
Sci Rep ; 11(1): 22880, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819548

RESUMO

Glaucoma is a chronic and progressive neurodegenerative disease of the optic nerve resulting in loss of retinal ganglion cells (RGCs) and vision. The most prominent glaucoma risk factor is increased intraocular pressure (IOP), and most models focus on reproducing this aspect to study disease mechanisms and targets. Yet, current models result in IOP profiles that often do not resemble clinical glaucoma. Here we introduce a new model that results in a gradual and sustained IOP increase over time. This approach modifies a circumlimbal suture method, taking care to make the sutures 'snug' instead of tight, without inducing an initial IOP spike. This approach did not immediately affect IOPs, but generated gradual ocular hypertension (gOHT) as the sutures tighten over time, in comparison to loosely sutured control eyes (CON), resulting in an average 12.6 mmHg increase in IOP at 17 weeks (p < 0.001). Corresponding characterization revealed relevant retinal and optic nerve pathology, such as thinning of the retinal nerve fiber layer, decreased optokinetic response, RGC loss, and optic nerve head remodeling. Yet, angles remained open, with no evidence of inflammation. Corresponding biochemical profiling indicated significant increases in TGF-ß2 and 3, and IL-1 family cytokines in gOHT optic nerve tissues compared to CON, with accompanying microglial reactivity, consistent with active tissue injury and repair mechanisms. Remarkably, this signature was absent from optic nerves following acute ocular hypertension (aOHT) associated with intentionally tightened sutures, although the resulting RGC loss was similar in both methods. These results suggest that the pattern of IOP change has an important impact on underlying pathophysiology.


Assuntos
Glaucoma/fisiopatologia , Pressão Intraocular , Doenças Neuroinflamatórias/fisiopatologia , Nervo Óptico/fisiopatologia , Retina/fisiopatologia , Técnicas de Sutura , Animais , Modelos Animais de Doenças , Progressão da Doença , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/patologia , Mediadores da Inflamação/metabolismo , Interleucina-1/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Ratos Long-Evans , Retina/metabolismo , Retina/patologia , Fatores de Tempo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
8.
J Biol Chem ; 296: 100118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234594

RESUMO

Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.


Assuntos
Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoprecipitação , Neuroproteção/fisiologia , Fosfatidilinositol 3-Quinases/química , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a RNA/genética , Espectrometria de Massas em Tandem
9.
Mol Nutr Food Res ; 64(4): e1801076, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797529

RESUMO

Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.


Assuntos
Inflamação/metabolismo , Lipoxinas/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Humanos , Lipoxinas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteína-Lisina 6-Oxidase/metabolismo
10.
Acta Ophthalmol ; 97(5): e673-e679, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30690929

RESUMO

PURPOSE: The aim of this study was to assess the relationship between retinal blood oxygen saturation (SO2 ) and specific aqueous humour (AH) concentrations of proangiogenic biomarkers in diabetic patients with nonproliferative diabetic retinopathy (NPDR) and to compare them with those of matched control subjects. METHODS: The sample comprised 14 participants with mild-to-moderate NPDR (69.1 ± 6.6 years) and 17 age-matched healthy controls (69.7 ± 6.3 years); all participants were previously scheduled for routine cataract extraction with intraocular lens implantation. Multiplex cytokine analyses of specific biomarkers, including vascular endothelial growth factor A (VEGF-A), angiopoietin2 (Ang2), epidermal growth factor (EGF), hepatocyte growth factor (HGF) and interleukin-8 (IL-8) were performed by BioPlex 200 system. Six non-invasive hyperspectral retinal images were acquired. RESULTS: Mean SO2 was significantly higher in both arterioles (94.4 ± 1.9 versus 93.0 ± 1.6) and venules (64.4 ± 5.6 versus 55.9 ± 4.8) of NPDR than in the healthy controls (p < 0.001). AH levels of HGF (p = 0.018), Ang2 (p = 0.005) and IL-8 (p = 0.034) were significantly higher, and EGF (p = 0.030) was significantly lower in NPDR subjects. The study demonstrated a correlation between venular retinal blood oxygen saturation and proangiogenic factors HGF (r = 0.558, p = 0.038), Ang2 (r = 0.556, p = 0.039) and EGF (r = -0.554, p = 0.040), but did not find any correlation for IL-8 (r = 0.330, p = 0.249) even though this biomarker was significantly higher in the diabetic group. CONCLUSION: To our knowledge, the present study is the first report considering the association between SO2 and AH concentrations of protein biomarkers in diabetic retinopathy. The biomarkers of interest have been shown to participate in cell death, which may explain higher oxygen saturation in NPDR.


Assuntos
Humor Aquoso/metabolismo , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Oxigênio/sangue , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia , Idoso , Biomarcadores/metabolismo , Retinopatia Diabética/diagnóstico , Feminino , Seguimentos , Humanos , Masculino , Oximetria , Vasos Retinianos/diagnóstico por imagem , Fatores de Tempo , Tomografia de Coerência Óptica/métodos , Acuidade Visual
11.
Exp Eye Res ; 183: 88-97, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30447198

RESUMO

Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.


Assuntos
Glaucoma/complicações , Pressão Intraocular/fisiologia , Doenças Neurodegenerativas , Doenças do Nervo Óptico/etiologia , Nervo Óptico/patologia , Estresse Oxidativo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Progressão da Doença , Glaucoma/diagnóstico , Humanos , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fatores de Risco
12.
Exp Eye Res ; 183: 84-87, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758190

RESUMO

It has been speculated that the unitary eyes of vertebrates and molluscs, and the compound eyes of insects and crustaceans, evolved separately. On the other hand, the common use of rhodopsin as a photoreceptor molecule, and the conservation of Pax6 as a master control gene for eye development, suggest instead that the eye evolved once. Yet, recently the molecular genetics that had seemed to suggest a definitive answer to this evolutionary point has once again become cloudy. Here we propose an alternative approach to addressing the question of eye evolution through comparative analyses of physiological optics. Serendipitous discoveries involving form deprivation and defocusing with young monkeys and chicks demonstrated the conserved importance of visual experience on eye development. Similar results have been demonstrated in teleosts, although differences exist in eye anatomy, physiology and optics. In particular, since fish grow throughout life, these effects can also be demonstrated in adults. In comparison, the cephalopod eye is an often-cited example of convergent evolution with the vertebrate eye, although considerable developmental differences exist. Nevertheless, squid eyes from animals raised under alternative lighting exhibit anatomical and refractive changes that agree with those found in vertebrates. Together, these observations provide functional and structural support for the view that the eye evolved once. Because of their very compressed lifespans (only one to two years) cephalopods may be ideal animal models for the study of ocular refractive development.


Assuntos
Proteínas do Olho/fisiologia , Olho/crescimento & desenvolvimento , Refração Ocular/fisiologia , Animais , Humanos
13.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Med Chem ; 61(4): 1622-1635, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29400470

RESUMO

A noninvasive topical ocular therapy for the treatment of neovascular or "wet" age-related macular degeneration would provide a patient administered alternative to the current standard of care, which requires physician administered intravitreal injections. This manuscript describes a novel strategy for the use of in vivo models of choroidal neovascularization (CNV) as the primary means of developing SAR related to efficacy from topical administration. Ultimately, this effort led to the discovery of acrizanib (LHA510), a small-molecule VEGFR-2 inhibitor with potency and efficacy in rodent CNV models, limited systemic exposure after topical ocular administration, multiple formulation options, and an acceptable rabbit ocular PK profile.


Assuntos
Administração Tópica , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Animais , Neovascularização de Coroide , Descoberta de Drogas , Indóis/farmacocinética , Indóis/uso terapêutico , Soluções Oftálmicas , Inibidores de Proteínas Quinases , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Coelhos , Roedores , Relação Estrutura-Atividade
15.
Neurobiol Dis ; 113: 59-69, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438738

RESUMO

Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia
16.
J Clin Invest ; 127(12): 4403-4414, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106385

RESUMO

Astrocytes perform critical non-cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.


Assuntos
Astrócitos/metabolismo , Lipoxinas , Fármacos Neuroprotetores , Retina , Doenças Retinianas , Células Ganglionares da Retina/metabolismo , Doença Aguda , Animais , Astrócitos/patologia , Lipoxinas/metabolismo , Lipoxinas/farmacologia , Masculino , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Retina/lesões , Retina/metabolismo , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia , Transdução de Sinais/efeitos dos fármacos
17.
Invest Ophthalmol Vis Sci ; 58(12): 5336-5346, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049736

RESUMO

Purpose: The purpose of this study was to determine how the architecture of the lamina cribrosa (LC) microstructure, including the shape and size of the lamina pores, influences the IOP-induced deformation of the neural tissues within the LC pores using computational modeling. Methods: We built seven specimen-specific finite element models of LC microstructure with distinct nonlinear anisotropic properties for LC beams and neural tissues based on histological sections from three sheep eyes. Changes in shape (aspect ratio and convexity) and size (area and perimeter length) due to IOP-induced hoop stress were calculated for 128 LC pores. Multivariate linear regression was used to determine if pore shape and size were correlated with the strain in the pores. We also compared the microstructure models to a homogenized model built following previous approaches. Results: The LC microstructure resulted in focal tensile, compressive, and shear strains in the neural tissues of the LC that were not predicted by homogenized models. IOP-induced hoop stress caused pores to become larger and more convex; however, pore aspect ratio did not change consistently. Peak tensile strains within the pores were well predicted by a linear regression model considering the initial convexity (negative correlation, P < 0.001), aspect ratio (positive correlation, P < 0.01), and area (negative correlation, P < 0.01). Significant correlations were also found when considering the deformed shape and size of the LC pores. Conclusions: The deformation of the LC neural tissues was largely dependent on the collagenous LC beams. Simple measures of LC pore shape and area provided good estimates of neural tissue biomechanical insult.


Assuntos
Simulação por Computador , Pressão Intraocular/fisiologia , Disco Óptico/patologia , Nervo Óptico/fisiopatologia , Estresse Mecânico , Animais , Análise de Elementos Finitos , Ovinos
18.
Acta Ophthalmol ; 95(3): e206-e211, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27678201

RESUMO

PURPOSE: To correlate angiogenic cytokines in the aqueous humour with total retinal blood flow in subjects with type 2 diabetes with non-proliferative diabetic retinopathy (NPDR). METHODS: A total of 17 controls and 16 NPDR patients were recruited into the study. Aqueous humour was collected at the start of cataract surgery to assess the concentration of 14 angiogenic cytokines. Aqueous humour was analysed using the suspension array method. Six images were acquired to assess total retinal blood flow (TRBF) using the prototype RTVue™ Doppler Fourier domain optical coherence tomography (Doppler FD-OCT) (Optovue, Inc., Fremont, CA) using a double circular scan protocol, 1 month postsurgery. At the same visit, forearm blood was collected to determine glycosylated haemoglobin (A1c). RESULTS: Transforming growth factor beta (TGF-ß1, TGF-ß2) and PLGF were increased while FGF-1 was reduced in NPDR compared to controls (Bonferroni corrected, p < 0.003 for all). Total retinal blood flow (TRBF) was significantly reduced in the NPDR group compared to controls (33.1 ± 9.9 versus 43.3 ± 5.3 µl/min, p = 0.002). Aqueous FGF-1 significantly correlated with TRBF in the NPDR group (r = 0.71, p = 0.01; r2  = 0.51). In a multiple regression analysis, A1c was found to be a significant predictor of aqueous TGF-ß1 and FGF-1 (p = 0.018 and p = 0.020, respectively). CONCLUSION: Aqueous angiogenic cytokines (TGF-ß1, TGF-ß2 and PLGF) were elevated in conjunction with a reduction in TRBF in patients with NPDR compared to controls. Non-invasive measurement of TRBF may be useful for predicting aqueous FGF-1 levels and severity of vasculopathy in DR.


Assuntos
Humor Aquoso/metabolismo , Retinopatia Diabética/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Placentário/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo , Idoso , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/fisiopatologia , Feminino , Humanos , Masculino , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
19.
Biomaterials ; 119: 23-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27988406

RESUMO

Cell-based tissue engineering is a potential treatment alternative for organ replacement. However, the lack of a robust vasculature, especially in the context of diseases such as diabetes, is a major hindrance to its success. Despite extensive research on the effects of diabetes in angiogenic sprouting, its effects on vessel arterio-venous (AV) specification have not been addressed. Using an engineered tissue that yields functional vessels with characteristic AV identities, we demonstrate that type 1 diabetes negatively affects vessel AV specification and perivascular cell (PVC) coverage. Blockage of PVC recruitment in normoglycemia does not affect blood flow parameters, but recapitulates the vascular immaturity found in diabetes, suggesting a role for PVCs in AV specification. The downregulation of Jagged1 and Notch3, key modulators of endothelial-perivascular interaction, observed in diabetes support this assertion. Co-culture assays indicate that PVCs induce arterial identity specification by inducing EphrinB2 and downregulating EphB4. This is antagonized by high glucose or blockage of endothelial Jagged1. Engineered tissues composed of microvessels from diabetic mice display normal PVC coverage and Jagged1/Notch3 gene expression when implanted into non-diabetic hosts. These indicate a lack of legacy effect and support the use of a more aggressive treatment of diabetes in patients undergoing revascularization therapies.


Assuntos
Anastomose Arteriovenosa/crescimento & desenvolvimento , Órgãos Bioartificiais , Vasos Sanguíneos/crescimento & desenvolvimento , Diabetes Mellitus Tipo 1/fisiopatologia , Células Epiteliais/patologia , Neovascularização Patológica/fisiopatologia , Engenharia Tecidual/métodos , Animais , Anastomose Arteriovenosa/patologia , Vasos Sanguíneos/patologia , Diabetes Mellitus Tipo 1/patologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia
20.
Cell Death Dis ; 7(9): e2386, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27685630

RESUMO

Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Gliose/patologia , Neurônios Retinianos/patologia , Fator de Necrose Tumoral alfa/toxicidade , Vitanolídeos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Lesões da Córnea , Modelos Animais de Doenças , Gliose/metabolismo , Imidazóis/farmacologia , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Polimerização/efeitos dos fármacos , Piridinas/farmacologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...